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1 11.1 - Sequences

The limit of a sequence {an} is simply the limit of of the expression
for the nth term with respect to x:

lim
x→∞

an = L

Theorem: If limx→∞ f(x) = L and f(n) = an when n is an integer,
then limn→∞ an = L

The theorem states that if a function f(x) approaches a limit L as x goes to infinity, and if
the values of f(n) are represented by the sequence an for integer values of n, then the limit of the
sequence an as n goes to infinity is also L. In other words, the limit of the function and the limit of
the sequence are the same when x and n approach infinity, respectively.

Limit Laws for Sequences:
Without copying them here, all the laws are the same as for regular limits.

Power Law:

lim
x→∞

(an)
p =

[
lim
x→∞

an

]p
if p > 0 AND an > 0
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Absolute Value Convergence Theorem:

If lim
x→∞

|an| = 0 then lim
x→∞

an = 0

Theorem:

If lim
x→∞

= L and the function f is continuous at L, then

lim
x→∞

f(an) = f(L)

If we apply a continuous function to the terms of a convergent sequence,
the result is also convergent.

The sequence {rn} is convergent if −1 ≤ r ≤ 1 and divergent for all
other values of r.

Definition: A sequence {an} is called increasing if an < an+1 for
all n ≥ 1. i.e.: a1 < a2 < a3 . . . . It is called decreasing if the converse
is true.

A sequence is called monotonic if it is either increasing or decreasing .

Monotonic Sequence Theorem: every bounded, monotonic
sequence is convergent.

In particular, a sequence that is increasing and bounded above,
converges, a sequence that is decreasing and bounded below converges.
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2 11.2

Sum of Geometric Series:
The sum of the geometric series:

∞∑
i=1

arn−1 = a+ ar + ar2

and its sum is:
a

1− r
for |r| < 1

Convergence Theorem 6: If a series is convergent, then the limit
of the nth term approaches 0.

Test For Divergence: if limx→∞ an does not exist or does not go to
0, then the series is divergent.

Series Splitting: A constant, c, can be moved into our out of the
sum operator.

Additionally, two additive parts of series can be decompiled into the
addition of separate series, or subtracted:∑

(an + bn) =
∑

an +
∑

bn

3 11.3

Integral Test: Suppose f is a continuous, positive, decreasing
function on [1,∞] and let an = f(n).
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If

∫ ∞

1

f(x)dx converges, then
∞∑
i=1

an converges.

If

∫ ∞

1

f(x)dx diverges, then
∞∑
i=1

an diverges.

The p series:
∞∑
i=1

1

np

is convergent if p > 1, and divergent if p ≤ 1

4 11.4

Direct Comparison Test: Suppose
∑

an,
∑

bn are series with
positive terms.

i) If
∑

bn is convergent, and an ≤ bn for all n, then
∑

an is also
convergent.

ii) Converse for divergent, an ≥ bn, divergent.

Limit Comparison Test: Given two series with positive terms:∑
an,

∑
bn:

lim
x→∞

an
bn

= c

where c is a finite number and c > 0, then either both series converge,
or both series diverge.
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5 11.5

Alternating Series Test: If the alternating series:

∞∑
i=1

(−1)n−1bn = b1 − b2 + b3 − b4 + . . .

satisfies:
i) bn+1 ≤ bn for all n

ii) lim
x→∞

b=0

Absolute Convergence:

The series
∑

an is called absolutely convergent if the series of
absolute values:

∑
|an| is convergent.

Conditional Convergence:

A series
∑

an conditionally convergent if it is convergent but not
absolutely convergent.

Theorem: If a series is absolutely convergent, then it is convergent.
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6 11.6

Ratio Test:

i) if limx→∞

∣∣∣an+1

an

∣∣∣ = L < 1, then the series
∑∞

n=1 an is absolutely

convergent.

ii) if limx→∞

∣∣∣an+1

an

∣∣∣ = L > 1, then the series
∑∞

n=1 an is divergent.

iii) if limx→∞

∣∣∣an+1

an

∣∣∣ = L = 1, then the ratio test is inconclusive.

Root Test:

i) if limn→∞
n
√

|an| = L < 1 then the series is absolutely con-
vergent.

ii) if limn→∞
n
√

|an| = L > 1 then the series is divergent.

ii) if limn→∞
n
√
|an| = L = 1 then the test is inconclusive.

7 11.7

Stratagies, no useful summary.
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8 11.8

Power Series Convergence:

For
∑∞

n=0 cn(x− a)n, there are only three possibilities

i) The series only converges when x = a.

ii) The series converges for all x.

iii) There is a positive number r such that the series converges if
|x− a| < R and diverges if |x− a > R|.

The number R, is the radius of convergence.

9 11.9

Representation 1:

1

1− x
= 1 + x+ x2 + x3 . . . xn =

∞∑
n=0

xn | x < 1
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Theorem: If the power series
∑

cn(x − a)n has a radius of conver-
gence R > 0, then the function f defined by:

f(x) = c0 + c1(x− a) + c2(x− a)2 · · · =
∞∑
n=0

cn(x− a)n

is differentiable and therefore continuous on the interval (a−R, a+R)

f ′(x) = c1 + 2c2(x− 1 + 3c3(x− a)2) =
∞∑
n=1

ncn(x− a)n−1

. . . similar for integration.

10 10.10

Theorem: If f has a power series representation (expansion) at a,
that is, if:

f(x) =
n∑

n=0

cn(x− a)n |x− a| < R

then its coefficients are given by:

cn =
f (n)(a)

n!
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Figure 1:

Essentially:

f(x) = f(a) +
f ′(a)

1!
(x− a) +

f ′′(a)

2!
(x− a)2 + . . .

Maclaurin Series: Essentially the resulting expansion when a = 0:

f(x) = f(0) +
f ′(0)

1!
x+

f ′′(0)

2!
x2 . . .

Theorem: If f(x) = Tn(x)+Rn(x), where Tn is the nth-degree Taylor
polynomial of f at a, and if:

lim
n→∞

Rn(x) = 0

9



for |x − a| < R, then f is equal to the sum of its Taylor series on the
interval |x− a| < R.

In other words, a function is the sum of its Taylor series if the
limit of the remainder approaches 0.

Useful Limit:

lim
n→∞

xn

n!
= 0

for every real number x.

Maclaurin Series of ex:

ex =
∞∑
n=0

xn

n!
for all x

Binomial Series: REVIEW IF WE HAVE TIME!

11 12.5

Parametric Line 1:
r = 0 + tv

Where: r0 is any point on the line.

v is the ”slope” or ”direction” of the line.

t is the parameter, that when varied results in the line structure.
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Parametric Line 2: Parametric equations for a line through the
point (x0, y0, z0) and parallel to the direction vector ⟨a, b, c⟩ are:

x = x0 + at y = y0 + by z = z0 + ct

Parametric Line 3: We can also eliminate the parameter and rear-
range to get:

x− x0

a
=

y − y0
b

=
z − z0

c

Parametric Line Segment: The line segment from r0 to r1 is given
by the vector equation:

r(t) = (1− t)r0 + tr1 0 ≤ t ≤ 1
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Plane Equation 1:

n · (r− r0) = 0

Where: r = arbitrary position on the plane, can be varied r0 = is a
particular point on the plane n = vector normal to the plane

Alternatively:
n · r = n · r0

Scalar Equation of a Plane: through a point P0(x0, y0, z0) with
normal vector nn = ⟨a, b, c⟩ is:

a(x− x0) + b(y − y0) + c(z − z0) = 0

Distance Formula: from a point P1(x1, y1, z1) to the plane ax+by+
cz + d = 0 is:

D =
|ax1 + by1 + cz1 + d|√

a2 + b2 + c2

Cross Product: If: a = ⟨a1, a2, a3⟩ and b = ⟨b1, b2, b3⟩, then the
cross product of a and b is the vector:

a× b = ⟨a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1⟩

Which can be memorized as the sequence: 23, 31, 12, who are prime,
prime, and very divisible respectively. Also sum to 5, 4, and 3 respec-
tively. And whose digits ascend, descend, and ascent, respectively.
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12 12.6

Traces: Setting one variable equal to zero, like:

x2 +
y2

9
+

z2

4
= 1

Set z = 0:

x2 +
y2

9
= 1

We can easily recognize this as an ellipse, and extend the logic for substi-
tuting x or y to be 0, which would all be ellipses, since they’re all ellipses,
we have an ellipsoid.

Figure 2:
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13 13.3

Arc Length of Space Curves:

L =

∫ b

a

√
[f ′(t)]2 + [g′(t)]2 + [h′(t)]2dt

L =

∫ b

a

√(
dx

dt

)2

+

(
dy

dt

)2

+

(
dz

dt

)2

dt

Re-parameterization of Arc Length Suppose we want to repa-
rameterize from the initial point (1, 0, 0)

r(t) = cos(t)i+ sin(t)i+ tk

. . .

arc length = s =
√
2t

Then substitute t = s√
2
. . .

Unit Tangent Vector:

T(t) =
r′(t)

|r′(t)|

Curvature: The curvature of a curve is:

κ =

∣∣∣∣dTds
∣∣∣∣ = ∣∣∣∣dT/dt

ds/dt

∣∣∣∣ = |T′(t)|
r′(t)
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Curvature Expression 2:

κ(t) =
|r′(t)× r′′(t)|

|r′(t)|3
]

Which can be memorized as the magnitude of the cross product of the
first derivative, second derivative, and divided by magnitude the first
derivative 3 times.

Curvature of f(x):

κ(x) =
|f ′′(x)|

[1 + (f ′(x))2]
3
2

Which can be remembered as absolute value of second derivative divided
by the inside of the arc length formula, but instead of square rooting, we
square root and then raise to 3!

Figure 3: Normal, Tangent, and Binormal Vectors
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Normal Vector of Space Curve:

N(t) =
T′(t)

|T′(t)|

Binormal Vector of Space Curve:

B(t) = T(t)×N(t)

Torsion: REVIEW IF WE HAVE TIME

14 13.4

Acceleration Vector?

a = v′T+ κv2N
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15 14.3

Partial Derivative notation: if z = f(x, y), we write:

fx(x, y) = fx =
∂f

∂x
=

∂z

∂x
= f1 = D1f = dxf

. . . similar for y

Rule for finding partial derivatives of z = f(x,y) :

1. To find fx, regard y as a constant and differentiate f(x, y)
with respect to x.
2. To find fy Do the exact same, but treat x as a constant, and
differentiate with respect to y.
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Fourier Series: ChadGPT Summary: (I need to sleep -15 minutes
ago):

1. The main idea: Any periodic function (a function that repeats
itself) can be represented as a sum of sines and cosines with different
frequencies and amplitudes.

2. The formula: For a function f(x) with period T , the Fourier series
is given by:

f(x) ≈ a0 +
∞∑
n=1

[
an cos

(
2πnx

T

)
+ bn sin

(
2πnx

T

)]
where n ranges from 1 to ∞, and a0, an, and bn are the Fourier
coefficients.

3. How to find the coefficients:

a0 =
1

T

∫ T

0

f(x) dx

an =
2

T

∫ T

0

f(x) cos

(
2πnx

T

)
dx

bn =
2

T

∫ T

0

f(x) sin

(
2πnx

T

)
dx

4. Steps to find the Fourier series representation:

(a) Determine if your function is periodic, and find its period T .

(b) Calculate the Fourier coefficients (a0, an, and bn) using the
above formulas.

(c) Plug the coefficients into the Fourier series formula to get the
representation.
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